水体中除含有无机污染物外,更含有大量的有机污染物,它们以*性和使水中溶解氧减少的形式对生态系统产生影响,危害人体健康。特定有机污染物是指那些*性大、积累性强、难降解、被列为优先污染物的有机化合物,其品种多、含量低。下面介绍几种这类物质。有机污染物是以碳水化合物、蛋白质、氨基酸以及脂肪等形式存在的天然有机物质及某些其他可生物降解的人工合成有机物质为组成的污染物。可分为天然有机污染物和人工合成有机污染物两大类。
等离子体是继固态、液态、气态之后的物质第四态,低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。当外加电压达到击穿电压时,气体分子被电离,产生包括电子、离子、原子和原子团在内的混合体。
近期,中科院合肥研究院智能机械所*青研究员课题组选用氦气、氩气、氧气、空气和氮气等五种气体进行实验,发现在惰性气体、氧气和空气条件下,等离子体放电对PCB77的降解效果显著。该研究对利用低温等离子体技术降解多氯联苯提供了理论支持,为持久性有机污染物的治理提供新的思路和方法。本项研究进一步拓宽了低温等离子体技术在环境污染物去除领域的应用发展。
利用低温等离子体技术在环保方面开发出了“低温等离子体有机废气净化设备”、“低温等离子体废水净化设备”及“低温等离子体汽车尾气净化技术”。低温等离子体技术在半导体工业、聚合物薄膜、材料防腐蚀、等离子体电子学、等离子体合成、等离子体冶金、等离子体煤化工、等离子体三废处理等领域的潜在市场每年将达一千几百亿美元。
低温等离子体技术
低温等离子体是一种新兴的高级氧化技术,具有工艺灵活、操作简便的特点。对于目前污染物难降解、体系复杂以及环境污染事故突发的特点,研究低温等离子体环境污染控制技术就显得不可或缺,低温等离子体中辉光放电(GDP)和介质阻挡放电(DBD)用于降解水体、土壤中污染物是空气强力杀菌净化除臭技术,低温等离子体技术是一个集物理学、化学、生物学和环境科学于一体的交叉综合性技术。该技术显著特点是对污染物兼具物理效应、化学效应和生物效应,且有能耗低、效率高、无二次污染等明显优点。低温等离子体的净化作用还具备显著的生物效应。发生的静电作用在各种细菌、病*等微生物表面产生的电能剪切力大于细胞膜表面张力,使细胞膜遭到破坏,导致微生物死亡。因此低温等离子体除臭技术具有优秀的消*杀菌之功效。
其净化作用机理包含两个方面:一是在产生等离子体的过程中,高频放电所产生的瞬间高能足够打开一些有害气体分子内的化学键,使之分解为单质原子或无害分子;二是等离子体中包含大量的高能电子、正负离子、激发态粒子和具有强氧化性的自由基,这些活性粒子和部分臭气分子碰撞结合,在电场作用下,使臭气分子处于激发态。当臭气分子获得的能量大于其分子键能的结合能时,臭气分子的化学键断裂,直接分解成单质原子或由单一原子构成得无害气体分子。同时产生的大量·OH、·HO2、·O等活性自由基和氧化性极强的O3,与有害气体分子发生化学反应,最终生成无害产物。低温等离子体技术不仅可以净化空气,同时还可以消*杀菌,从而使空气维持在自然、清新的状态。这是其他任何技术方法所无法比拟的。
新闻来源:中国科学院合肥物质科学研究院